Correction: Combating a Global Threat to a Clonal Crop: Banana Black Sigatoka Pathogen Pseudocercospora fijiensis (Synonym Mycosphaerella fijiensis) Genomes Reveal Clues for Disease Control

نویسندگان

  • Rafael E Arango Isaza
  • Caucasella Diaz-Trujillo
  • Braham Dhillon
  • Andrea Aerts
  • Jean Carlier
  • Charles F Crane
  • Tristan V de Jong
  • Ineke de Vries
  • Robert Dietrich
  • Andrew D Farmer
  • Claudia Fortes Fereira
  • Suzana Garcia
  • Mauricio Guzman
  • Richard C Hamelin
  • Erika A Lindquist
  • Rahim Mehrabi
  • Olman Quiros
  • Jeremy Schmutz
  • Harris Shapiro
  • Elizabeth Reynolds
  • Gabriel Scalliet
  • Manoel Souza
  • Ioannis Stergiopoulos
  • Theo A J Van der Lee
  • Pierre J G M De Wit
  • Marie-Françoise Zapater
  • Lute-Harm Zwiers
  • Igor V Grigoriev
  • Stephen B Goodwin
  • Gert H J Kema
چکیده

Black Sigatoka or black leaf streak disease, caused by the Dothideomycete fungus Pseudocercospora fijiensis (previously: Mycosphaerella fijiensis), is the most significant foliar disease of banana worldwide. Due to the lack of effective host resistance, management of this disease requires frequent fungicide applications, which greatly increase the economic and environmental costs to produce banana. Weekly applications in most banana plantations lead to rapid evolution of fungicide-resistant strains within populations causing disease-control failures throughout the world. Given its extremely high economic importance, two strains of P. fijiensis were sequenced and assembled with the aid of a new genetic linkage map. The 74-Mb genome of P. fijiensis is massively expanded by LTR retrotransposons, making it the largest genome within the Dothideomycetes. Melting-curve assays suggest that the genomes of two closely related members of the Sigatoka disease complex, P. eumusae and P. musae, also are expanded. Electrophoretic karyotyping and analyses of molecular markers in P. fijiensis field populations showed chromosome-length polymorphisms and high genetic diversity. Genetic differentiation was also detected using neutral markers, suggesting strong selection with limited gene flow at the studied geographic scale. Frequencies of fungicide resistance in fungicide-treated plantations were much higher than those in untreated wild-type P. fijiensis populations. A homologue of the Cladosporium fulvum Avr4 effector, PfAvr4, was identified in the P. fijiensis genome. Infiltration of the purified PfAVR4 protein into leaves of the resistant banana variety Calcutta 4 resulted in a hypersensitive-like response. This result suggests that Calcutta 4 could carry an unknown resistance gene recognizing PfAVR4. Besides adding to our understanding of the overall Dothideomycete genome structures, the P. fijiensis genome will aid in developing fungicide treatment schedules to combat this pathogen and in improving the efficiency of banana breeding programs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Combating the Sigatoka Disease Complex on Banana

Banana is the fourth most important staple food in the world, behind rice, wheat, and maize, with more than 100 million tons produced annually [1]. Although the majority of bananas produced are consumed locally, banana export is a multi-billion–dollar business [2]. Bananas are grown in more than 100 countries worldwide, largely in developing countries in tropical regions of Africa, Asia, and La...

متن کامل

Mycosphaerella leaf spot diseases of bananas : present status and outlook

By the end of the 1980s, black leaf streak disease caused by Mycosphaerella fijiensis was present in all continents where bananas or plantains were grown, although distribution in some regions was limited to a few countries. In this presentation, the spread of the disease during the 1990s in several countries and regions, and the important socio-economic consequences are discussed. From 1990 to...

متن کامل

Identification of Differentially-Expressed Genes in Response to Mycosphaerella fijiensis in the Resistant Musa Accession ‘Calcutta-4’ Using Suppression Subtractive Hybridization

Bananas and plantains are considered an important crop around the world. Banana production is affected by several constraints, of which Black Sigatoka Disease, caused by the fungus Mycosphaerella fijiensis, is considered one of the most important diseases in banana plantations. The banana accession 'Calcutta-4' has a natural resistance to Black Sigatoka; however, the fruit is not valuable for c...

متن کامل

Comparative Genomics of the Sigatoka Disease Complex on Banana Suggests a Link between Parallel Evolutionary Changes in Pseudocercospora fijiensis and Pseudocercospora eumusae and Increased Virulence on the Banana Host

The Sigatoka disease complex, caused by the closely-related Dothideomycete fungi Pseudocercospora musae (yellow sigatoka), Pseudocercospora eumusae (eumusae leaf spot), and Pseudocercospora fijiensis (black sigatoka), is currently the most devastating disease on banana worldwide. The three species emerged on bananas from a recent common ancestor and show clear differences in virulence, with P. ...

متن کامل

Variable number of tandem repeat markers in the genome sequence of Mycosphaerella fijiensis, the causal agent of black leaf streak disease of banana (Musa spp).

We searched the genome of Mycosphaerella fijiensis for molecular markers that would allow population genetics analysis of this plant pathogen. M. fijiensis, the causal agent of banana leaf streak disease, also known as black Sigatoka, is the most devastating pathogen attacking bananas (Musa spp). Recently, the entire genome sequence of M. fijiensis became available. We screened this database fo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2016